How to make a simple Renegade Server Plug-InforTT 4.0

A complete newbies guide

Thistutorial should enable you to successfully create yourown server plug-in that works with TT 4.0
from scratch. | am deliberately goingto use very simpleterms, and try to explain each step assuming
little to no previous knowledge on the subject.

The objective here istoincrease the damage applied when a player damages something.

It will coverthe resources required, references to supporting documentation, simple programming
elements, building the code into ausable file and finally deploying it on yourserver.

The tutorial has been written specifically as a response to a requestfrom a community member, but
| will try to make it as genericas possible for others that might be interested.

First of all, you are goingto need an Integrated Development Environment. Thisis justaterm used
for the applicationthatallows youto edit the source code and includes an automated build feature,
to turn that codeintoafile.

For thistutorial, you are goingto need Microsoft Visual Studio 2010. It's an expensive program to
purchase, and as such suffers terribly from online pirates who putit on torrent sites. Thereisan
express edition, but | have nevertried usingit. The TT team confirmed it should work with the
source code, but | have nevertried. It’savailable here.

You're also goingto need the source code that the TT has released. This source code is more than
whatyou really need. They have released an entire solution, which is basically abunch of projectsin
one bigcontainer. One of the projectsin thissolutionis a template, standard plug-in that actually
doesvery little otherthan print out some messages, thisis the one that we will use as a base.
However, the other plug-in’s are interesting to look at to understand how otherthings are
accomplished.

You can download the source code here.
Thereisalso a guide formakinga new plug-in using this source onthe TT wiki, here.

However, this guide is more about how to actually set-up your plug-in as a new project within the
solution. It's complicated, manually intensive and pretty boring. [t doesn’treally get you making
anything quickly and it doesn’treally show you what’s what.

Thistutorial isaimed at the beginner, and as such, | feel noshame intakinga short-cutfor you, and
over-looking the part where you are encouraged to make a project within the solution, and just work
inthe existingexample provided instead, and rename it to our choice.

Lots of waffle sofar... Let’s get cracking!

http://www.visualstudio.com/en-us/downloads#d-2010-express
http://www.tiberiantechnologies.org/files/tt-source-4.0.zip
http://www.tiberiantechnologies.org/wiki/index.php/Creating_a_new_SSGM_plugin

Assumingyou’ve installed visual studio and downloaded the source code, open up the zip folder that
should simply be called “tt-source-4.0.zip” and extract the folder called “source”. It doesn’t matter
where you extract this folder, you can move it later of you like.

In the source folderyou’ll find afile called “scripts_VC2010.sIn” you should open this file, and it
should automatically open with yourvisual studio application, and look like this:

00 scripts VC2010 - Microsoft Visual Studio =3 =R x|

File Edit View Project Build Debug Tesm Data Tools Architecture Test Analyze Window Help

il (S | % B9 - - LB b [Debug -] [win32 | @ [error Bl o =

st sans 31 8

bansystem
CharacterRefund

example-plugin
ExtraConsoleCommands
FirstBlood
makemix
MemoryManager
Mute
NoPaints
PointsDistribution
RandomStartingCredits

pts

Spectate
SuddenDeath
Swap
tbedit
teamspeak

&3 Solution E... TR

OQutput

Show output from: [Debug 8L ==

BN & Find Sym

Ifit’sthe firsttime you’ve used the application, you will likely have some other prompts regarding
your preferred set-up.

The firstthingwe are goingto do is change the configuration of the example plug-insothatitisn’ta
debugversion, butaregular SSGM release version. We do that because the SSGM release version
has configuration settings that are needed to build an appropriate SSGMplug-in. To do that, follow
these steps:

Selectthe solution at the top of the hierarchy inthe solution explorer window called
“scripts_VC2010” by clickingitonce.

From the build configuration managerdrop down menu select “Release SSGM”.

©0 scripts VC2010 - Microsoft Visual Studio

=N
File Edit View Project Build Debug Team Data Tqak L imVindow _Help
il S @ % 2B 9 - - S -G b | Releasessan|- | [winzz || T @ B O i

Debug =

i Debug S5GM Solution Explorer - R x
7 Release =
[Release SSGM 7 Selution ‘scripts VC2010' (20 projects)
g Configurstion Manager... N iSpavniGill |

nsystem
aracterRefund

7 eample-plugin

7] ExtraConsoleCommands

7 NoPoints
7 PointsDistribution
ndomStartingCredits

Properties
scripts VC2010 Solution Properties

(Name) scripts VC2010
Active config Release SSGM|Win32

Output s Description

Show output from: | Debug Al @%@ Path Ci\Users\reborn\Deskto}

Startup project scripts

(Name)
The name of the solution file.

Now we are goingto be sneaky and rename the example plug-into ourown plug-in name.

Thisis a bitof a cheat, technically you should be addingall your plug-in’s to one solution, and
maintainingthemthere. However, you may never get tothat part, andit’s always something you can
do later. It takes fair amount of the boring part out of the job.

Simply right click onthe “example-plugin”inthe solution explorer window, and choose “rename”.
You can now call itwhateveryou like. Due to the request from the community member, | am going
to call this plug-in PlayerDamagerMod.

| G E s BB i -

Solution Explorer

=
g Solution ‘scripts_VC2010' (20 projects)
s 17 AntiSpawnKill
21 bansystem
-ﬂ CharacterRefund
;’J crates
A af
F71 axample-plugin
wtraConsoleCormmands

| »

>
>
>
>

4 Build

Rebuild rstBlood
Clean nakemix L
emaeryManager
»
Project Only ute
Calculate Code Metrics oPoints

ointsDistribution

Profile Guided Optimization 3
andomStartingCredits

Project Dependencies...

cripts
Project Build Order... pectate
Build Customizations... uddenDeath
ap 4
b bedit
References... amspeak -
@ Class Wizard... [GUIS 0 28 S LYW I Teamn Exp... B Class View
3‘; View Class Diagram > 1 x
Set as StartUp Project plugin Project Properties -
Debug 3
L_? Add Selution to Source Control...
¥ cut Cirl+X £ example-plugin
A Paste CrleV it Dependenci
. it File C\Users\reborn'\Desktop]
X Remove Del .
Mamespace exampleplugin
Rename F2

Unload Project

Rescan Solution
j‘ Open Folder in Windows Explorer
Properties

he project name.

You'll also wantto rename the actual source filesinside this project, to do that, justclick the little
triangle looking things nextto your plug-in’s name, and then also open up the folder called “Header
Files” and the one called “Source Files”. This should reveal ExamplePlugin.h and ExamplePlugin.cpp
(as well asthe Generalfiles). Renamethe ExamplePlugin files to your projects name (but leave the
file extensions.cpp and .h alone), like this:

o B
Solution Explorer -1 x
2z
> [7 CharacterRefund .

b
> [2 FirstBlood
> 73 makemix
> [Z1 MemoryManager
> [T Mute
> I3 NoPoints
4 [71 PlayerDamagerMed
(54 External Dependencies
4 [Header Files
8] ExamplePlugin.h
|n] General.h
(3 Resource Files
4 [Source Files
€] ExamolePlugin.cop.

m

§ Open
Open With..
[E] View Code Crrl+ Alt+0 -
& View Class Diagram B2 Class View
% Compile Ctri+FT v 1%
Exclude From Project B
& Cut Crl+X
53 Copy Crl+C
X Remove Del lugin.cpp
Rename 2
de
E2 Properties
born!Desktop

Relative Path ExemplePlugin.cpp

- I Included In Project True

Here’s a little bit of information about the .cpp and .hfiles. It’sirresponsible to just give instructions
without really giving at least the smallest explanation asto why you are doing this.

The solutionis almost entirely written in C++, a programminglanguage very commonlyused to
create desk top gamingtitles (amongst otherthings). The plug-inis exclusively written in this
language.

C++ isthe language you are goingto be usingto write your modifications, and as such it makes use
of Headerfiles(.h) and CPlus Plus source files (.cpp). The conventionis that.h files contain
declarations, and .cpp files contain definitions. Thisis an areathat people could think | am being too
basicon, buttryingto keepitsimple I'll give alittle more depth to this.

The .cpp files contain the functions, the code thatis actually run and executed. So say you write a
function that gives a playersome weapons, restores his health and changes his armortype to that of
a tank. You might name that function “UberfyPlayer”. The thingis, every function needs a
declaration. So you write your function named UberfyPlayer, and then you declare that functionin
the headerfile (youcandeclareitinside the .cpp file, but that limits you to only beingable to use
that functioninside that one single.cpp file). This allows you to use that function when you need to,
and you can even use that functioninside other.cppfilesaslongasyouinclude thatheaderfilein
the .cpp file.

You’re now goingto have to openthe actual .cpp file (mineis called PlayerDamagerMod.cpp) and
make some changesto itso that it will compilewhenyou buildit. We could spend some time here
talking about linking, compiling and the build process, but I’ll skim this by sayingit’s the process
where we say “Ok, I’'ve written my code, now turn this code into the finished product”.

You can openthe file by double clickingit, orright click and “open”. You should get something that
looks like this:

@0 scripts VC2010 - Microsoft Visual Studio (=
File Edit View Project Build Debug Team Dats Tools Awchitecture Test Analyze Window Help

Pl S | 8] 9 - - G- 5| b [Release 536M -] [win32 ~| | (% | BamplePlugin - | A G R s BB - k.

PO Ry s fE| £ T2|0PFH38H A

PlayerDamagerMod.cpp X B solution Explorer
(Global Scape) 3 a2 E 8
B/* Renegade Scripts.dll > [3 bansystem
Copyright 2011 Tiberian Technologies 73 CharacterRefund
[T crates
atf
ExtraConsoleCommands

> bl .

"
&
3
8
T
s
g
g

This file is part of the Renegade scripts.dll
The Renegade scripts.dll is free so jou can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Lo
Software Foundation; either version 2, or (at your option) any later » A FirstBlood
version. See the file COPYING for more details. > 3 makemix
In addition, an exemption is given to allow Run Time Dynamic Linking of this code with any closed source module that does not contain code covered by > [MemoryManager
Only the source code to the module(s) containing the licenced code has to be released. 7 Mute

/ & NoPoints

4 [J PlayerDamagerMod
- g External Dependencies
> [Header Files

m

#include "General.h”
#include "PlayerDamagertiod.h”
#include “engine tt.h"
#include “engine_io.h"

#include "gngame.h” [Resource Files
4 [Source Files
Svoid* HookupAT3x(void* a, void* b, void* c, void* patch_start, void* patch_end, int (*version_selector)()) = €28 Dlovsaciamanarbdad,.cpp
[§ Open
return HookupAT3(a,b,c,patch_start,patch_end,version_selector); Open With
H
[E View Code Ctrl+Aft+0
= ExamplePlugin: : ExamplePlugin() & | View Class Dingram v
i 3
Console_Output(_ FUNCTION_ "\n"); % Compile Cul+F1
helloWorldString = “Hello World!™; T
RegisterEvent(EVENT GLOBAL INT,this); erties
RegisterEvent(EVENT_MAP_INI, this); # Cut Cirl+X
RegisterEvent(EVENT_CHAT_HOOK,this); B3 Copy CirleC
RegisterFuent(FVFNT ORIFCT CRFATF HOOK.this):
w0% - m X Remove Del sgerh
Output Rename F2
o . 5 de
Show output from: | Debug B EEN | = Properties
e OeEreteborn

Welcome! Thisiswhere youreally start to make a difference. Here is whereyou write the code that
will change the way the serverworks.

You'll notice that there issome green writing at the top of the file in normal plain English. No,
unfortunatelyit’s notas easy as just typingin English and the application makes the programyou
want. However, you can add comments to your code that the application willignore. It displays
these commentsin green text. You can add comments like this:

/* Anything | write

In-between theseslash asterisk

Symbolswill be ignored by the application when it compiles the code into my

Final product */

//1can write anything|like on a single line afteradouble slash and it will be ignored
Thiswon’tbe ignored, and will cause an error //Butthis will be ignored

Afterthe comments, you’ll notice some #include references. Thisis what was discussed earlier
regarding header(.h) files. There are functions that the plug-in needs to work, and these functions
are includedinother.cppfiles, where the functions are declared in the header filesyou see listed at
the top of the file.

For our plug-inwe willnot need to add any more headerfiles, but more complicated plug-ins almost
certainly would.

You should also see some red squiggly lines under some of the lines of text. Thisisn’tfool proof, but
the application triesto pre-empterrors, and visually shows potential issues with theselines.

Thisone should be pretty obvious:

#include "General.h"
#include "ExamplePlugin.h”

#iEETUEE "engine_tt.h"
We renamed ExamplePlugin.h to PlayerDamagerMod.h. Simply replacing that word should
automatically removethe red squiggly line, try it now (you should notice the otherred squiggly lines
disappeartoo):

iDhbeRFe=s22 08008 d3am0

PlayerDamagerMad.cpp® %

(Global Scope) v|
97% Renegade Scripts.dll
Copyright 2611 Tiberian Technologies

This file is part of the Renegade scripts.dll
The Renegade scripts.dll is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your eption) any later
version. See the file COPYING for more details.
In addition, an exemption is given to allow Run Time Dynamic Linking of this code with any closed sourc
Only the source code to the module(s) containing the licenced code has to be released.
.
#include "General.h”
#include "PlayerDamagertiod.h”
#include "engine_tt.h"
#include "engine_io.h"
#include "gngame.h®

= void* HookupAT3x(veid* a, void* b, veid® ¢, veid* patch_start, veid* patch_end, int (*version_selector)())

return HookupAT3(a,b,c,patch_start,patch_end,version_selector);

}
= ExamplePlugin: : ExamplePlugin()

Console_Output(__FUNCTION__ "\n");
helloWorldString = "Hello World!™;
RegisterEvent (EVENT_GLOBAL_INI,this);
RegisterEvent (EVENT MAP_INI,this);
RegisterEvent (EVENT_CHAT HOOK,this);
RecistarFuant (FUFRNT ORIECT CREATE HOMC.this):

W% - < m,

You'll notice that there are several references to “ExamplePlugin” inthe source code, we will want
to change that, too. It isn’treally necessary to be honest, you could justleave it. However, it makes it
a little bitmore your own thisway and should go a little way to help you understand how the plug-in
works.

The easiest way to change these referencesisthe Find & Replace function (pretty much the same
thing across most Microsoft applications).

Just pressthe control keyand F, then click on the “Quick Replace” tab.

Type “ExamplePlugin” into the “Find what” entry, and type “PlayerDamagerMod” into the “Replace
with” entry. Just make sure you change the drop down option under “Lookin” to Current project,
that really important! You don’t want to search and replace inthe entire solution! The click on the
“Replace all” button.

P b an 5

PlayerDamagerMod.cpp® <

- ExamplePlugin ~| ¥ ExamplePlugin()
=/* Renegade Scripts.dll
Copyright 2811 Tiberian Technclogies

Lil
&
3
i
o
s
8

This file is part of the Renegade scripts.dll
The Renegade scripts.dll is free software; you can redistribute it and/or medify it under

the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2, or (&t your opticn) any later

version. See the file COPYING for more details.

In addition, an exemption is given to allow Run Time Dynamic Linking of this code with any cleosed source medule that does not contain co
Only the source code to the module(s) containing the

sy Find and Replace *OXx
#include "General.h" [E—& Quick Find ~
#include "PlayerDamagertod.h” e
#include "engine_tt.h" | Find what:

#include "engine_ioc.h” ExamplePlugin -
#include "gmgame.h”

’f’B Quick Replace ~

] Replace with:

—lvoid* HookupAT3x(veid* a, void* b, void* c, void* patch_s\ PlayerDamagerMod| -
t return HookupAT3(a,b,c,patch_start,patch_end,version_: L
¥ [Entire Solution v]
=|ExamplePlugin: :ExamplePlugin() Find options
Console Qutput(_ FUNCTION _ "\n"); Find Next] [Replace]

helloWorldString = "Helle World!™;
RegisterEvent{EVENT_GLOBAL_INI,this);
RegisterEvent{EVENT_MAP_INI,this);
RegisterEvent(EVENT_CHAT_HOOK,this);
RepisterFvent { FWENT DRIFCT CREATE HOMK.thisi:
100% - +| m

Output
Show output from: |Debug '|| 7 ‘ &S| —1'| =X ‘ =

You should now see three tabs. Thisis because datain the those three tabs has been modified as
part of your change. Thisis represented by the little star/asterisk on the tab. You’ll need to save
these changes. You can do that by going File->Save all, orindividually right clicking each tab and then
hitting save.

o8 scripts VC2010 - Microsoft Visual Studio
File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

Pl S | &S - - LB | B Release SSGM ~| | Win32 -1
iR eEEESZ2 20808 0Ba0

I el PlayerDamagerfod.h™ PlayerDamagerMod.cpp™

(Global Scope) -
—L’* Renegade Scripts.dll
Copyright 2811 Tiberian Technologies

1310|dx3 Janag 3

This file is part of the Renegade scripts.dll

The Renegade scripts.dll is free software; you can redistribute it and/or modify
the terms of the GNU General Public License as published by the Free

Software Foundation; either wversion 2, or (at your option) any later

version. See the file COPYING for more details.

In addition, an exemption is given to allow Run Time Dynamic Linking of this cod

Only the source code to the module(s) centaining the licenced code has to be rel
®

g

—|#ifndef PlayerDamagertMod_INCLUDE__ GENERAL_H
#define PlayerDamagertod _INCLUDE__ GEMERAL_H

#include "Defines.h™
#include "Standard.h™

#endif

You should now have your own base for a plug-in!

It's difficult to continue at this point without mentioning programming lingo on the way, butI'll try
to keepitto a minimum. It’s also worth mentioning that programminginside this plug-inis not
exactly the bestintroductionto programming... Normally you have anice little exampleto fill out
that will printthe words “Hello World” to the console screen, followed up by an introduction to
types of variables.

A quick word on “variables”. Variables are like astorage location. Think back to maths at school
where you have to solve an equation to work out what “x” equals, “x” isjust a storage location.

With C++ these variables must be defined as atype. You can think of them like strict buckets, when
youintroduce yourvariable you must explain what type of variableitis. Inthe bucket analogy you
might have a bucket specifically only forwater, and buckets only for Oranges. In C++ you have
variable types forintegers (which are whole numbers: 1,2,3...), variable types forcharacters as well
as many others. Below isalist of some of the commonvariable types.

Name Description Size* Range®*
signed: -128 to 127

char Character or small integer. 1byte unsigned: 0 to 255
short int) signed: -32768 to 32767
(short) Short Integer. 2bytes unsigned: 0 to 65535

signed: -2147483648 to
int Integer. 4bytes 2147483647
unsigned: 0 to 42949567295

signed: -2147483648 to

long int (long)|Long integer. 4bytes 2147483647

unsigned: 0 to 4294957295
boo Eaciusoéean value, It can take one of two values: true or 1byte true OF False
float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)
double Double precision floating point number. Sbytes +/-1.7e +/- 308 (~15 digits)
long double Long double precision floating point number. Sbytes +/- 1.7e +/- 308 (~15 digits)
= AL 2ord -
wochar © Wide character. bytes 1 wide character

My pointlwas tryingto make thoughisthat you are jumpinginat the deepend, sodon’tget
worried that things don’t make lots of sense right now, or that thisis hard.

Normally youwouldn’tbe workingin an APl (Advanced Programming Interface)foryourfirst project,
and youwouldn’t have to be dealing with understanding the concept of hooks.

Callingitan APlisbeingkind, essentially it’s agiant hack, and as such, you’re going to pick up some
dirty habits.

The nextthingyoushouldseeinthe exampleisthis:

void* HookupAT3x(void* a, void* b, void* c, void* patch_start, void* patch_end, int
(*version_selector)())

{
}

return HookupAT3(a,b,c,patch_start,patch_end,version_selector);

We're goingto just walk on by this part and ignore it. You’re not goingto change it, and justneed to
know it’s part of the engine to do with versioning.

Afterthat youshouldsee this:

PlayerDamagerMod: :PlayerDamagerMod()

{
Console_Output(__FUNCTION__ "\n");
helloWorldString = "Hello World!";
RegisterEvent (EVENT_GLOBAL_INI,this);
RegisterEvent (EVENT_MAP_INI,this);
RegisterEvent (EVENT_CHAT_HOOK,this);
RegisterEvent (EVENT_OBJECT_CREATE_HOOK, this);
RegisterEvent (EVENT_LOAD_LEVEL_HOOK,this);
RegisterEvent (EVENT_GAME_OVER_HOOK,this);
RegisterEvent (EVENT_PLAYER_JOIN_HOOK, this);
RegisterEvent (EVENT_PLAYER_LEAVE_HOOK,this);
RegisterEvent (EVENT_REFILL HOOK,this);
RegisterEvent (EVENT_POWERUP_PURCHASE_HOOK, this);
RegisterEvent (EVENT_VEHICLE_PURCHASE_HOOK, this);
RegisterEvent (EVENT_CHARACTER_PURCHASE_HOOK,this);
RegisterEvent (EVENT_THINK_HOOK, this);

Thisis part of a class. A classis like a data type, where you have avariable of type int. Onlyit’s bigger
inthe sense thatitcan contain many variablesand also functions.

Thisis a constructor, and while much can be said about what a constructor s, all you really need to
know right now is that the constructor sets everythingupin the class and initialises the members of

the class.
You might be able to intuitivelyrecognise whatis happeninginthis constructor...

Essentially, it’s making calls to all those hacks that the boffins have written at TT, which hookinto
the server, andis watching forwhen certain things happen. You can see that they have included lots
of eventsinthe standard plug-in, like when avehicle is purchased oraplayerjoins the server.

There are othereventsthatthe TT guys have made available foryou, but they have notregistered
them. The eventthat we really wantis the damage event, sowe’re goingtoadd it. We don’treally
needto “watch” the other events, sowe could remove these registers and all the associated
functions. We’re not going to though, as you may want to expand on this plug-in, and they will help
you understand how the serverworks when you see the function names triggered to appearonthe
FDS screen at different times.

Now we’re goingtoregisterthe damage events (plural). Thereare two damage events we need to
watch; Those eventssentfrom TT clients and damage events sentfromnon-TT clients. Dueto TT
changingthe way that TT clients send damage datathere are two events forthis, | believe thisisthe
only eventthat behaves this way.

Modifying both events ensures thisis applied to non-TT playersand TT players alike.

The eventsthatare available inthe standard example plug-in are defined in the gmplugin.h file. This
fileisunderthe “scripts” project, inside the SSGMfolder. Here is the listand their explanations:

virtual float Get_Version() {return INTERFACE_VERSION;} //returns the version of the SSGM interface this plugin isintended to work with
virtual void OnLoadGlobalINISettings(INIClass *SSGMIni) {}; //called when ssgm.iniis parsed to read global settings

virtual void OnFreeData() {}; //called whendata allocated for global settingsis freed (i.e. on shutdownandbefore globalsettings are re-
loaded)

virtual void OnLoadMaplNISettings(INIClass *SSGMIni) {}; //called when ssgm.ini is parsed to read per-map settings

virtual void OnFreeMapData() {}; //called when data allocated for per-map settingsis freed (i.e. onshutdown and before per-map settings
are re-loaded)

virtual bool OnChat(int PlayerID, TextMessage Enum Type,const wchar_t *Message,intrecieverID) {return true;}; //called on chatmessage
virtual void OnObjectCreate(void *data,GameObject *obj) {}; //called onobject create

virtual void OnLoadLevel() {}; //called on level load

virtual void OnGameOver() {}; //called on game over

virtual void OnPlayerJoin(int PlayerID,const char *PlayerName){}; //called onplayer join

virtual void OnPlayerLeave(int PlayerID) {}; //called on player leave

virtual bool OnRefill[GameObject *purchaser) {returntrue;}; //called on refill

virtual int OnPowerupPurchase(BaseControllerClass *base,GameObject *purchaser, unsigned int cost,unsigned int preset,const char *data)
{return -1;}; //called on beacon purchase

virtual int OnVehiclePurchase(Base ControllerClass *base,GameObject *purchaser,unsignedintcost,unsigned int preset,const char *data)
{return -1;}; //called on vehicle purchase

virtual int OnCharacterPurchase(BaseControllerClass *base,GameObject *purchaser,unsigned int cost,unsignedint preset,const char
*data){return-1;}; //called oncharacter purchase

virtual void OnThink() {}; //called once per frame

virtual bool OnRadioCommand(int PlayerType, int PlayerID, int AnnouncementID, intlconID, Announce mentEnum AnnouncementType)
{return true;}//called onradiocommand

virtual bool OnStockDamage (PhysicalGameObj* damager, PhysicalGameObj* target, float damage, uint warheadld) { return true; } //called
on damage from clients with version<4.0

virtual bool OnTtDamage(Physical Game Obj* damager, PhysicalGameObj* target, const AmmoDefinitionClass* ammo, const char* bone) {
return true; }//called on damage fromclients with version>=4.0

virtual void OnPreLoadLevel() {}; //called on level load but before the clientis sentanynetwork updates

http://en.wikipedia.org/wiki/Constructor_%28object-oriented_programming%29

Technically, you can write your own hooks and register other events. However, that’s way beyond
the scope of thistutorial.

You’ll notice these two events:

virtual bool OnRadioCommand(int PlayerType, int PlayerID, int AnnouncementID, intlconlD, Announce me ntEnum AnnouncementType)
{return true;}//called onradiocommand

virtual bool OnStockDamage (PhysicalGameObj* damager, PhysicalGameObj* target, float damage, uint warheadld) { return true; } //called
on damage from clients with version<4.0

These are the oneswe’re goingto additionally registerin our plug-in.
Openupthe PlayerDamagerMod.hand you should see the following:

class PlayerDamagerMod :
public Plugin

{
StringClass helloWorldString;
public:
PlayerDamagerMod();
~PlayerDamagerMod();

virtual void OnLoadGlobalINISettings(INIClass *SSGMIni);

virtual void OnFreeData();

virtual void OnLoadMapINISettings(INIClass *SSGMIni);

virtual void OnFreeMapData();

virtual bool OnChat(int PlayerID,TextMessageEnum Type,const wchar_t *Message,int recieverID);

virtual void OnObjectCreate(void *data,GameObject *obj);

virtual void OnLoadLevel();

virtual void OnGameOver();

virtual void OnPlayerJoin(int PlayerID,const char *PlayerName);

virtual void OnPlayerLeave(int PlayerID);

virtual bool OnRefill(GameObject *purchaser);

virtual int OnPowerupPurchase(BaseControllerClass *base,GameObject *purchaser,unsigned int
cost,unsigned int preset,const char *data);

virtual int OnVehiclePurchase(BaseControllerClass *base,GameObject *purchaser,unsigned int
cost,unsigned int preset,const char *data);

virtual int OnCharacterPurchase(BaseControllerClass *base,GameObject *purchaser,unsigned int
cost,unsigned int preset,const char *data);

virtual void OnThink();

1

Thisis the entire class declaration, and where we need to add the declarations for the damage
functions.
Addthe following code here:

virtual bool OnStockDamage(PhysicalGameObj* damager, PhysicalGameObj* target, float damage, uint
warheadId);

virtual bool OnTtDamage(PhysicalGameObj* damager, PhysicalGameObj* target, const AmmoDefinitionClass*
ammo, const char* bone);

Justabove the line:

virtual void OnLoadGlobalINISettings(INIClass *SSGMIni);

Save thisfile, soyou’ll have something that looks like this:

o0 scripts VC2010 - Microsoft Visual Studio

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

el S @ 8 B9 - o - B | b Release 556N ~| [Win32 -|| (# |ExamplePlugin - & o g =2
P s B 20808 aBaQ .

General.h PlayerDamagerMod.h* < REEREHNETGEL TNl R]

v"[3PIa).rerDar'nagerl‘\ﬂod - OnTtDamage(PhysicalGameObj * damager, PhysicalGameObj * ta

This file is part of the Renegade scripts.dll

The Renegade scripts.dll is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2, or (at your option) any later

version. See the file COPYING for more details.

In addition, an exemption is given to allow Run Time Dynamic Linking of this code with any closed source module that does no
Only the source code to the module(s) containing the licenced code has to be released.

110|dx3 12mRg 3

*J

#pragma once

#include “gmplugin.h”

-lclass PlayerDamagerMod :
public Plugin
{

stringClass helloWorldstring;
public:

PlayerDamagertod();
~PlayerDamagerMod();

virtual boocl OnStockDamage(PhysicalGameObj* damager, PhysicalGameObj* target, float damage, uint warheadId);

virtual bool OnTtDamage(PhysicalGameObj* damager, PhysicalGameObj* target, const AmmoDefinitionClass® ammo, const char® bone
virtual veid OnLoadGlobalINISettings(INIClass *SSGMIni);

virtual void OnFreeData();

virtual void OnLoadMapINISettings(INIClass *SSGMIni);

wirtual woid OnFreeManDatal’: .
4 | "

LR -

Now that the functions are declared, you have to actually define the functions and you need to
registerthe eventsothatthe functions are actually called when the plug-in detects that the event
you’re watchingfor has happened.

To do that, open up PlayerDamagerMod.cpp. Then you need to modify the constructortoinclude
the eventregister, make yourslooks like this:

PlayerDamagerMod: :PlayerDamagerMod()

Console_Output(__FUNCTION__ "\n");

RegisterEvent (EVENT_STOCK_DAMAGE_HOOK, this);
RegisterEvent (EVENT_TT_DAMAGE_HOOK,this);
helloWorldString = "Hello World!";

RegisterEvent (EVENT_GLOBAL_INI,this);
RegisterEvent (EVENT_MAP_INI,this);

RegisterEvent (EVENT_CHAT_HOOK,this);
RegisterEvent (EVENT_OBJECT_CREATE_HOOK, this);
RegisterEvent (EVENT_LOAD_LEVEL_HOOK,this);
RegisterEvent (EVENT_GAME_OVER_HOOK, this);
RegisterEvent (EVENT_PLAYER_JOIN_HOOK, this);
RegisterEvent(EVENT_PLAYER LEAVE_HOOK,this);
RegisterEvent (EVENT_REFILL_HOOK,this);
RegisterEvent (EVENT_POWERUP_PURCHASE_HOOK, this);
RegisterEvent (EVENT_VEHICLE_PURCHASE_HOOK,this);
RegisterEvent (EVENT_CHARACTER_PURCHASE_HOOK,this);
RegisterEvent (EVENT_THINK_HOOK, this);

The part youneedtoadd is:

RegisterEvent (EVENT_STOCK_DAMAGE_HOOK, this);
RegisterEvent (EVENT_TT_DAMAGE_HOOK,this);

The “EVENT_STOCK_DAMAGE_HOOK” and TT version are foundin gmplugin.h.

Very basically, whatyou have just done is told your plug-in to watch out forwhen damage occurs.

It would be nice tojust setthe damage value of the base defence, in which case we wouldn’t have to
watch out for damage eventsand apply additional logic, but the damage thatis appliedis calculated
clientside, sowe have toaccomplish the effect this way.

The class howeveralso contains adestructor, thisis basically a nice clean way of closingdown the
classobjectelegantly and cleanly. Thisis where you tell the serverto stop watching out for the
eventsyouregistered previously.

“Uas?

The destructorlooks very similarto the constructor, but you’ll notice the “~” symbol.

Unregisterthe eventlike this, then save the file.

PlayerDamagerMod: :~PlayerDamagerMod ()

Console_Output(__FUNCTION__ "\n");
UnregisterEvent (EVENT_STOCK_DAMAGE_HOOK, this);
UnregisterEvent (EVENT_TT_DAMAGE_HOOK, this);
UnregisterEvent(EVENT_GLOBAL_INI,this);
UnregisterEvent(EVENT_MAP_INI,this);
UnregisterEvent (EVENT_CHAT_HOOK, this);
UnregisterEvent(EVENT_OBJECT_CREATE_HOOK,this);
UnregisterEvent(EVENT_LOAD LEVEL_HOOK, this);
UnregisterEvent (EVENT_GAME_OVER_HOOK, this);
UnregisterEvent (EVENT_PLAYER_JOIN HOOK,this);
UnregisterEvent(EVENT_PLAYER_LEAVE_HOOK, this);
UnregisterEvent(EVENT_REFILL_HOOK,this);
UnregisterEvent (EVENT_POWERUP_PURCHASE_HOOK, this);
UnregisterEvent (EVENT_VEHICLE_PURCHASE_HOOK,this);
UnregisterEvent (EVENT_CHARACTER_PURCHASE_HOOK, this);
UnregisterEvent (EVENT_THINK_HOOK,this);

}
Thisis justa graceful way of closingitall down.

You’re now goingto write a function thatis called when that registered event actually happens, and
apply some additional logicwhen that takes place.

You now need to add the actual function, to do this start typing bool PlayerDamagerMod:: just

above the function here:
void PlayerDamagerMod: :OnLoadGlobalINISettings(INIClass *SSGMIni)

{
SSGMIni->Get_String(helloWorldString, "General", "Hello World!");

Console_Output(__FUNCTION__ "\n");

You should notice that Visual Studio actually tries helping you now. Because you have included the
function declarationinyourclassalready, it will work similarto predictive cell phone messaging (and
by cell phone, I really mean mobile phone), like this:

UnregisterEvent (EVENT_CHARACTER_PURCHASE_HOOK,this);
UnregisterEvent (EVENT_THINK_HOOK,this);

}

—Ibool PlayerDamageriod::

W Get_Version * | public: float Plugin:Get_Version(

-lvoid PlayerDamageriod:: @ helloWorldString Fle: gmplugin.h

{ % OnCharacterPurchase

SSGEMIni->Get_String “% OnChat "Hello World!™);
Console_oOutput(_ FU & OnFreeData
h % OnFreeMapData
—lvoid PlayerDamageriMod:: ¥ OnGameQver .
{ % OnLoadGloballNISettings
Console_output(_FU “% OnloadlLevel =

}

Both of the functions should look like this:

bool PlayerDamagerMod: :0OnStockDamage (PhysicalGameObj* damager, PhysicalGameObj* target, float damage,
uint warheadId)
{

return true;

}
bool PlayerDamagerMod: :OnTtDamage(PhysicalGameObj* damager, PhysicalGameObj* target, const
AmmoDefinitionClass* ammo, const char* bone)

{

return true;

So you should have somethingthatlooks like this:

UnregisterEvent(EVENT_VEHICLE_PURCHASE_HOOK,this);
UnregisterEvent(EVENT_CHARACTER_PURCHASE_HOOK,this);
UnregisterEvent(EVENT_THINK_HOOK,this);

12u10yd

}

—lboel PlayerDamagerMod: :0nStockDamage(PhysicalGameObj* damager, PhysicalGameObj* target, float damage, uint warheadId)

{
return truej;
}
=/boel PlayerDamagerMod: :OnTtDamage(PhysicalGameObj* damager, PhysicalGameObj* target, const AmmoDefinitionClass* ammo, const char* bone)
{
return true;
1

=lvoid PlayerDamagertod: :OnLoadGlobalINISettings (INIClass *SS5GMIni)
55GMIni-»Get_String(helloWorldString, "General™, "Hello World!™);
Console_Output{_ FUNCTION__ "\n"};
}
What you basically have here are two functions that are called. OnStockDamage is called
(activated/executed/run) when a player whois not running TT causes some damage to occur in-

game, and onTtDamage is called whenaTT player causes some damage in-game.

In orderto make our mod we’re goingto needtoinclude some otherclasses, thisis becausewe are
goingto use some of the function parameters, and some of these parameters contain typesthatare
declaredin classes outside of our plug-in. They are not the standard int/bool/char etctype variables,
but something entirely bespoke.

We needtoinclude:

#include "WeaponClass.h"
#include "SoldierGameObj.h"

So at the top of your PlayerDamagerMod.cpp file make the changestolook like this:

oo ccripts_VC2010 - Microsoft Visual Studic
File Edit Wiew Project Build Debug Team Data Tools Architecture Test Apalyze Window Help

Pl il S A | 8 a9 - -85 | b Release SSGM ~| | Win32 -/ | [
iDL eE[EEZ2[UPE 836l

General.h PlayerDamagerMod.h PlayerDamagerMod.cpp

(Global Scope) -

-1/* Renegade Scripts.dll
Copyright 2811 Tiberian Technologies

1210)dx3 Jamag %

This file is part of the Renegade scripts.dll
The Renegade scripts.dll is free software; you can redistribute it and/or modify it
the terms of the GNU General Public License as published by the Free
software Foundation; either wversion 2, or (at your option) any later
version. See the file COPYING for more details.
In addition, an exemption is giwven to allow Run Time Dynamic Linking of this code wi
only the source code to the module(s) containing the licenced code has to be release
*f
#include "General.h"
#include "PlayerDamagertod.h™
#include "engine tt.h"
#include "engine io.h"
#include "gmgame.h"”
#include "WeaponClass.h"
#include "SoldierGameObj.h"

—lvoid* HookupAT3x(void* a, woid® b, woid*® c, void*® patch_start, woid® patch_end, int (*wve

{

ratiirn HAaalamA T2 s k r natrbh cdard nsdrh and wvrancdan calartanis

Now back to yourfunctionsand a little explanation...

bool PlayerDamagerMod: :0OnStockDamage (PhysicalGameObj* damager, PhysicalGameObj* target, float damage,
uint warheadId)

You’ll see thatyourfirst function starts with the word “bool”in blue. The blue isjustthe applications
way of lettingyou know it’s atype. This means that your function returns avalue, and that value is
type bool.

Notall functions return values. Some functions make changesinside the program and do not return

any value atall.

But say you had a program that solved a maths problem. The program started up and the application
asksthe userto inputthe value of “x”. The function then took that value “x” and multiplied it by 10.

You're going to want that functionto return the final value!

Thisfunctionis type bool though, we could gointo the history of the name, but all you really need to
know isthat bool can only hold two possible values; either 1or 0 (althoughit’s easierto think of this
as either “yesorno” or “true or false”).

That bool value (Boolean)in this case represents whether or not the damage is allowed to be applied
or not. Meaningyou could returnthe value “0” or “false” and no damage would be applied. Pretty
cool!

The reason why this bool value represents whether damage is allowed to be applied ornotis
because TT have hooked the damage event. Thisis not normal coding as you would first be
introduced to, and actually relies on hacks. We’re not goingto go into this, butit was worth a little
explanationsoyoudidn’tjustthink you can conjure up variable types and theirrelationshiptoin-
game events.

Afterthe function name you have some parentheses “()”, and stuff insidethem. Each thinginthe
parentheses (separated by the coma) is called a function parameter.

These are the thingsthatyou use when calling the function.
So forexample, you might have afunction like this:

Int MultiplyByTen(int x)

{

intValue=0;

Value=x* 10;

returnValue;

}

The above function allows you to callit, and you can specify any value (or othervariable) of type int
as x.So it will take any whole number, times it by ten, and thenreturnthat value.

You'll notice that each parameteralso has a variable type. Half of these types are pretty specificto
the Plug-In APl, and you won’tfind them anywhere else. Thisis why trying to learn how to program
and starting directly with the Renegade APl can be confusing.

The pointhere is though, that these parameters can be usedinside the functionitself.

Because these are hooks, you are not calling the functions, they are called by the serveritself when
the eventsare triggered, butyou can alterthe return value, perform functions inside this function
and use the parametersthat are passedto the function.

Basically, you getto a pointerto the actual thingthat caused the damage, the thingthat’s damaged,
the amount of damage applied and the warhead that was used.

The TT versionissimilar, but gives different parameters that are more useful and granulated.

Afterthe parenthesesyou have acurly brace “{“ symbol. Blocks of code are enclosed between these
braces, so itallows youto add statements (the body of yourfunction) thatis to be executedinside
them.

Here is how you apply the additional damage any time damage occurs that is calculated and sent by
the client (buildingdamage is calculated serverside). Luckily there is already a function for that:

void (* Apply_Damage)(GameObject * object, float amount, const char * warhead_name, GameObject *
damager);

You have to pass these function parameters foritto actually work, so you use it like this:
Commands->Apply Damage(target, damage, ArmorWarheadManager::Get_Warhead Name(warheadId), damager);

We’ve basically used all the existing parameters from the original function in our statement here.

The first parameteris saying what should we apply this damage to. We want to apply the damage to
the suckerthat’s getting owned.

The second parameterisan actual amount, a number. It’s notan integer, buta floating point
number. Really though, it’s just the amount of damage we wantto apply. I've putin here the same
amount of damage that was originally applied, so effectively you have doubled the damage. Thisis
important, because we will expand on this alittle bit to make the plug-in more usefuland dynamic.

The only one that’s a little differentis the third one, the functionis looking for the warhead name,
but our parameterinthe original function gives us the warhead ID. We simply look up the name of
the warhead by using the warhead ID, by callinganotherfunction.

The fourth parameterisjust whois applying the damage, and we keep the damagerthe same (the
player).

You should now have somethinglike this:

bool PlayerDamagerMod: :0OnStockDamage (PhysicalGameObj* damager, PhysicalGameObj* target, float damage,
uint warheadld)

{
Commands->Apply Damage(target, damage, ArmorWarheadManager::Get_Warhead Name(warheadId),
damager); //This statement is essentially applying the same amount of damage to the target again.
return true;
}

The only thing hereisthat it’s pretty static. It makes buildings apply twice as much damage, but you
might wantto a differentamount of damage. You could do that like this:

bool PlayerDamagerMod: :OnStockDamage (PhysicalGameObj* damager, PhysicalGameObj* target, float damage,
uint warheadId)

{

Commands->Apply_Damage(target, damage/2, ArmorWarheadManager: :Get_Warhead_Name(warheadId),
damager); //This statement is essentially applying the same amount of damage to the target again.
return true;
}

By changingthe second parameterto “damage/2” you are applying another 50% worth of damage
instead of anotherfull 100%.

You could alterthis quite a lot, like “damage*3” meaning the damage thatis appliedintotalis4
timesthe original.

But do youreally wantto have to change this value, compile it, and putiton the serverwhenyou
are tryingto find the right balance?

Instead of a static value like 2, you could use a variable.

So you have damage*x, where xis a floating point numberand it could actually be 0.5 or 5.0.

Instead of callingitx, we will call this “Modifier”, and we’re goingto let the .ini file define what value
isassigned to “Modifier”.

As a side note, you could make the base defence damage becomelessandlessovertimeina
marathon serveras a gimmick. All youwould needtodois “returnfalse” inside your code block of
curly braces, so no normal damage is applied, and apply the damage yourself using the code, so that

overtimeitgoesfrom 3 timesas powerto applying no damage.
I’m not sure whetherthat would be a good idea or not, butit should make you realise that you can

change the value of your variables atany time, and do not need them to be static.

Thisis how you make an entryin the .ini file read fromthe plug-in.
Firstly youneedtodeclare the variable inyourclass, soopenyour.h file, and add this:

float Modifier;

o scripts_VC2010 - Microsoft Visual Studio

File Edit View Project Build Debug Team Data Tools Architecture Test Apalyze Window Help
Pl sl S | AR 9 - - G5 | b [Release SSGV ~| | Win32

P R A |IZE2|0&PGBaBamad;

| =

e
i

General.h PlayerDamagerMod.h < REWSET G ET0" Tl Refa T

% PlayerDamagerMod -
This file is part of the Renegade scripts.dll
The Renegade scripts.dll is free software; you can redistribute it and/or moc
the terms of the GNU General Public License as published by the Free
Software Foundation; either wersion 2, or (at your option) any later
version. See the file COPYING for more details.
In addition, an exemption is given to allow Run Time Dynamic Linking of this

Only the source code to the module(s) containing the licenced code has to be
*j

/

Jau0)dx3 1aag S

#pragma once

#include “gmplugin.h”

-lclass PlayerDamagertod :
public Plugin

{

float Modifier;|

stringClass helloWorldstring;
public:

PlayerDamagerMod();
~PlayerDamagertod();

virtual bool OnStockDamage(PhysicalGameObj* damager, PhysicalGameObj* target,
virtual bool OnTtDamage(PhysicalGameObj* damager, PhysicalGameObj* target, cc
virtual void OnlLoadGlobalINISettings(INIClass *SSGMIni);

Thensave thefile.
Now go back to the .cpp file and find the following:

void PlayerDamagerMod: :OnLoadGlobalINISettings(INIClass *SSGMIni)

SSGMIni->Get_String(helloWorldString, "General", "Hello World!");
Console_Output(__FUNCTION__ "\n");
}
Thisis where the inifiles should be loaded and the values read.
You'll notice thatthe example plug-in already loads astring type variable, and then hasa
Console_Poutput function.

The string “Hello World” isn’t doing us any harm at all, we can leave itthere asan example you
mightlike to use lateron. The console output can actually be confusing to newbies, sol'll explainita
little here, becauseyou’ll see it often throughout the plug-in.

Console_Outputisafunctionthat allows youto printtextto the FDS console itself. It's not seen by
players, just printed tothe screen.

It normally contains text, ora textvariable thatis printed. In this case though,the __ FUNCTION____
actually passes the function name as a parameter.

The reasonfor thisis sothat the function name is printed to the console screen whenthat function
iscalled.

It's designedto help beginners understand when the events are being called. You should leave them
all there, asthis will help you learn more how things are working.

Thisis where we are goingto use a pre-existing function and passin our parametersto getourini
value fromtheinifile, like this:

void PlayerDamagerMod: :OnLoadGlobalINISettings(INIClass *SSGMIni)

{
Modifier = SSGMIni->Get_Float("General", "DamageModifier", 2.0);
SSGMIni->Get_String(helloWorldString, "General", "Hello World!");
Console_Output(__FUNCTION__ "\n");

¥

We’ve already declared “Modifier” in the class, so we can use that variable here, and it will know
exactly whatwe’re referring to.

What thisnow meansis that the default modifier value is 2.0. You have to rememberthat this
essentially makes the total damage 3times more, nottwo.

You couldsetit to 0.5 foran additional 50% damage.

You alsoneedto make sure that underthe [General] settingsin the inifile, thatthe entry
“DamageModifier=2.0" is present. Of course, you can change that value to anythingyou like, the
serverdefaultsto2.0incase youforgetto setit inthe inifile. The inifile is what will set the value to.

Now we have this variable that can be modified fromthe inifile, we need to update our damage
hook, like this:

bool PlayerDamagerMod: :0OnStockDamage (PhysicalGameObj* damager, PhysicalGameObj* target, float damage,
uint warheadId)

{
Commands->Apply Damage(target, damage * Modifier,
ArmorWarheadManager: :Get_Warhead_Name(warheadId), damager); //This statement is essentially applying
the same amount of damage to the target again.
return true;
}

We changed the stock damage function, but we now needto go back and apply almost exactly the
same code to the TT version.

It's not precisely the same, becausethe TTversion has deeperdetails of what’s occurring with
damage, sowe’ll need to modify it abit, like this:

bool PlayerDamagerMod: :0OnTtDamage(PhysicalGameObj* damager, PhysicalGameObj* target, const
AmmoDefinitionClass* ammo, const char* bone)
{

float damage = ammo->Damage();

int warheadId = ammo->Warhead();

Commands->Apply Damage(target, damage * Modifier,
ArmorWarheadManager: :Get_Warhead_Name(warheadId), damager); //This statement is essentially applying
the same amount of damage to the target again.

return true;
}

Allthat’s happened here isthatthe damage and warheadld variables have had to be extracted from
the different parameters that are available onthe TT damage hook.

We’'re also goingto remove one of the printed messages that occurs on the “think event”, if youdo
not remove it, it will cause considerable “spam” on your FDS console.

Simply change this code:

void PlayerDamagerMod: :OnThink()
{

}

Console_Output(__FUNCTION__ "\n");

To read like this:

void PlayerDamagerMod: :OnThink()
{

}

//Console Output(__FUNCTION__ "\n");

With that done, you are now ready to compile your plug-in. It's ready!

The firsttime you compile it will take a while. The plug-in makes use of many otherfiles that are not
pre-built, so depending on your PC, this could take anywhere between 10 seconds to several
minutes forthe firsttime.

| would like to gointo linking and compilingin detail, but essentially, the application can take care of

thisforyou, so all youneedtodo is right click the project file inthe solution explorer, and select
“build”:

;"3 CharacterRefund

:ﬂ crates

[cff

;"3 ExtraConsoleCommands
[Z FirstBlood

m

[-."3 rnakemix
[Build :"3 MemeoryManager
Rebuild 27 Mute
=2 Clean 2 MoPaints
ta Project Only 5 :"3 PlayerDamagerMod . n
zd External Dependencies
Calculate Code Metrics = Header Files
Profile Guided Optimization ’ h] PlayerDamagerMod.h
al))] General.h
Project Dependencies... 3 Resource Files
Project Build Order... [5 Source Files
Build Customizations... ¢+ PlayerDarnagerMod.cpp -
ta
Add 5 I FF Teamn Exp... E® Class View
References... v g x
fﬁ Class Wizard... Ctrl+Shift+x rDamagerMod Project Properties -
f,_; View Class Diagram tl | @
Set as StartUp Project
Debug » Mame) PlayerDamagerMad
I ¢ [R roject Dependenci
=~ CILHEN TG Seuree LOnet.. roject File C:\Users\reborn' Desktop)
& Cut Ctrl+X oot Namespace exampleplugin
b Paste Ctrl+V
Remove Del
Rename F2
Unload Project F
. e)
Rescan Solution] .
fies the project name.
Open Folder in Windows Explorer

Properties

If you have entered everything correctly, you should get a message at the bottom of the application
identifying that:

== Build: 3 succeeded, @ failed, @ up-to-date, @ skipped ========"

-lvoid PlayerDamagertod: :OnLoadGlobalINISettings(INIClass *SSGMIni)
r
100% ~ 4| mn

Output

A

3) Tuuchlng "C \Users\reborn\De5ktnp\snurce\temp\PlayerDamagerMod\Release SSGM\PlayerDamagerMod lastbu11
3>

3»Build succeeded.

3>

3»>Time Elapsed @@:90:82.76

Build: 3 succeeded, @ failed, @ up-to-date, @ skipped

)=

T — —

Show output from: | Build '|

—== e p—— TTooTToTE ST or oo T oo [

4 1

SRl #a Find Symbol Results

Now the file should be ready! Browse to the folder source\bin\Release SSGM (where everyou
placed “source”), andsitting nicely inyourfoldershould be your compiled .dll file:

=N EOR =3
@uv| . » source ¢ bin » Release S55GM - |¢,| Search Release SSGM Dl
Organize = Include in library « Share with « Burn Mew folder = - i '®
- =
% REBORN-DUMP * Name Date modified Type Size
/& REBORN-PC
: %] PlayerDamagerMod.dll 23/11/2013 16:18 Application extens... 15KB
4_‘__||] PlayerDamagerMod.exp 23/11/2013 16:18 Exports Library File 1KB
: 50:"2 i #3 PlayerDamagerMod.lib 23/11/201316:18 Object File Library 2KE
ntispawnki
" pt — =) PlayerDamagerMod.map 23/11/2013 16:18 Linker Address Map 29 KB
ansystem
- 2 ‘E‘ &| PlayerDamagerMod.pdb 23/11/2013 16:18 Proegram Debug D... 1,651 KB
in
- b %) scripts.dll Type: Program Debug Database plication extens... 3,051 KB
. Debu b
g £l scripts.exp Size: 1.61 MB rts Library File 250 KB
. Release > X X Date modified: 23/11,/2013 16:18 o B
= e :,3 scripts.lib Y TorT wect File Library 392 KB
y E3se
= = R =) scripts.map 23/11/2013 16:18 Linker Address Map 3,862 KB
ad
Aractemetn & scripts.pdb 23/11/201316:18 Program DebugD.. 16523 KB
crates -
10 items
10 items

The nexttime you “build” should be much quicker. However, if you “build-all” it will take a
significantly longertime, asitwill build all the projectsin the solution (that meansall the otherplug-
instoo)!

To install place ' PlayerDamagerMod.dll'inside the root FDSfolderand add an entry for it under
[Plugins] in SSGM.ini.

You should now load up your serverand check it out!
Kind regards,

Spencer ‘reborn’ Elliott

